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SUMMARY A novel resonator structure for the cut-off circular wave-
guide method is proposed to suppress the unwanted TE modes in the axial
direction and TM modes in the radial direction. In this method, a dielectric
plate sample is placed between two copper circular cylinders and clamped
by two clips. The cylinder regions constitute the TE0m mode cut-offwaveg-
uides. The measurement principle is based on a rigorous analysis by the
Ritz-Galerkin method. Many resonance modes observed in the measure-
ment can be identified effectively by mode charts. In order to verify the va-
lidity of the novel structure for this method, the temperature dependences
for three low-loss organic material plates were measured in the frequency
range 40 to 50 GHz. It is found that modified polyolefin plates have com-
parable electric characteristics and low price, compared with PTFE plates.
Moreover, it is verified that the novel resonator structure is effective in im-
provement of accuracy and stability in measurement. The measurement
precisions are estimated within 1 percent for εr and within 15 percent for
tan δ.
key words: cut-off circular waveguide method, millimeter wave, dielectric
substrate measurement

1. Introduction

Recently, the development of new material with low-loss
characteristics and low price is requested for application to
millimeter wave circuit. It has been an important subject to
measure complex permittivity of dielectric materials accu-
rately and efficiently in millimeter wave range. Some mea-
surement methods [1]–[3] have been reported to evaluate
these dielectric materials in millimeter wave range.

In our laboratory, we have proposed a cut-off circular
waveguide method to measure the temperature dependence
of complex permittivity of low-loss dielectric plates accu-
rately and efficiently in the millimeter wave range [4]–[10].

At first, a TE011 mode circular waveguide method was
proposed by S.B. Cohn and K.C. Kelly [11], where a res-
onator is constituted by inserting a circular disk sample into
a TE01 mode cut-off circular waveguide. This method was
applied with a waveguide excitation to the millimeter wave
measurement [12]. In order to measure any size of sam-
ples nondestructively, a novel resonator structure, where a
dielectric plate sample is placed between two copper circu-
lar cylinders, was proposed by Y. Kobayashi and J. Sato [4],
and G. Kent [13], independently. However, it was found that
the correction value of the fringe effect for relative permit-
tivity by the G. Kent’s method was not correct.

The features of the cut-off circular waveguide method
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are as follows,

• The measurement principle is based on rigorous analy-
sis by the Ritz-Galerkin method with the mode match-
ing technique [4], [5].
• The dielectric plate sample is placed between two

cylinders into which a copper circular cylinder is cut in
the middle of height and clamped by two clips; hence,
the sample can be exchanged easily [6].
• The millimeter wave vector network analyzer consti-

tuted by a coaxial cable system is used; hence, it is
easy to adjust the coupling strength finely.
• A mode chart is presented to identify many resonance

modes observed in the measurement [7].
• An automatic measurement system was developed to

measure the temperature dependence more efficiently
and precisely [8].
• A grooved circular cavity for separating degenerate TE

and TM modes to measure the dimension and relative
conductivity accurately is presented [9].

Recently, we found that the unwanted TE modes in the
axial direction and TM modes in the radial direction are ex-
cited in the conventional structure [14]. These resonance
modes affect the complex permittivity measurements.

In this paper, a novel resonator structure for the cut-off
circular waveguide method is proposed to suppress the un-
wanted TE modes in the axial direction and TM modes in
the radial direction, respectively. The validity of correction
for the fringe effect by the rigorous analysis is confirmed
experimentally. In order to verify the validity of the novel
resonator structure for this method, the temperature depen-
dences of complex permittivity for three low-loss organic
material plates are measured for the TE011 mode in the fre-
quency range 40 to 50 GHz.

2. Measurement Principle

2.1 Resonator Structure

A novel resonator structure is shown in Fig. 1(a). A copper
circular cylinder with the diameter D is cut into two parts in
the middle of the height H. A dielectric plate sample hav-
ing the thickness t and the diameter d, which is larger than
D, is placed between these cylinders and clamped by two
clips. The cylinder regions constitute the TE0m mode cut-off
waveguides; hence, the fields decay exponentially in the ax-
ial direction. Similarly, the dielectric plate region outside D











SHIMIZU and KOBAYASHI: CUT-OFF CIRCULAR WAVEGUIDE METHOD
677

(a) Circular empty cavity. (b) Organic plates.

Fig. 12 Temperature dependences of circular empty cavity and PTFE,
Crythnex, and MPO plates.

measured for the TE011 mode. The measured results are
shown in Fig. 12(b).

The f0 and εr of the PTFE plate have inflection points
near 50 K, 170 K and 290 K, because of the phase transitions
of crystal construction. However, the f0 and εr of the MPO
plate have no inflection point. Moreover, the tan δ value of
the MPO plate is quite lower than that of the PTFE above
room temperature. We can expect that the MPO plates have
the high possibility for application to millimeter wave cir-
cuit, because of comparable electric characteristics and low
price, compared with PTFE plates.

7. Conclusion

It was verified that the novel resonator structure proposed
in this paper was effective in improvement of accuracy and
stability in measurement. As a result, it is concluded that
the cut-off circular waveguide method is useful to measure
the temperature dependence of complex permittivity of low-
loss dielectric plates accurately and efficiently in millime-
ter wave range. The measurement precisions are estimated
within 1 percent for εr = 2–30 and within 15 percent for
tan δ = 10−3–10−6.
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Appendix

A.1 Analysis of Resonance Frequency f0

Figure A· 1 shows a resonator structure used in this rigorous
analysis. The circular cylinder is cut into two parts in the
middle of the height H. A dielectric plate having relative
permittivity εr, thickness t and diameter d, which is a larger
size than the diameter of the cylinder D, is sandwiched be-
tween two dielectric supports having relative permittivity εg
and thickness g. They are placed the two cup-shaped circu-
lar cylinders. This structure corresponds to Fig. A· 1 when
g=0. The relative permeability µr=1 is assumed in each
medium. When g � 0 in this configuration, we can calculate
the conductor loss at the cavity fringe by the perturbation of
g [15], [16].

The TE0m1 resonance mode can be analyzed rigorously
by the Ritz-Galerkin method. From the structural symme-
try, it is sufficient to consider only the region 0 ≤ z ≤ H1.
The region is divided into three homogeneous subregions
[I], [II], and [III]. The quantities for the subregions are de-
noted by subscripts 1, 2, and 3, respectively. A time har-
monic factor e jωt is omitted. Applying the boundary condi-
tions on the r-θ plane at z = 0 and on the conducting surface.
We can expand magnetic Helmholtz vector Πm for each re-
gion as follows:

Πm1 =

∞∑
p=1

ApJ0

(
kr1pr

)
cos β1pz

Πm2 =

∞∑
p=1

BpJ0

(
kr1pr

)
cos β2pz

+

∞∑
p=1

CpJ0

(
kr1pr

)
sin β2pz

Πm3 =

∞∑
q=1

DqJ0

(
kr3qr

)
sin β3q (H1 − z) (A· 1)

where

Fig. A· 1 Geometry of analysis.

β2
1p = εrk

2
0 − k2

r1p

β2
2p = εgk

2
0 − k2

r1p

β2
3q = k2

0 − k2
r3q (A· 2)

kr1p = up/a

kr3q = vq/R (A· 3)

In the above, Ap, Bp, Cp, and Dq are expansion coef-
ficients to be determined from the boundary conditions for
the regions [I], [II], and [III]. Moreover, the electromagnetic
fields components of the TE0m1 mode in each region are ob-
tained by substituting (A· 1) into (A· 4).

Hz = k2Πm +
∂2Πm

∂z2

Hr =
∂2Πm

∂r∂z

Eθ = jωµ0
∂Πm

∂r
(A· 4)

The relationship of Bp and Cp is determined from the conti-
nuity of Hr at z = L1 as follows:

Cp

Bp
= −β1p tan β1pL1 − β2p tan β2pL1

β1p tan β1pL1 tan β2pL1 + β2p
(A· 5)

The relationship of Ap and Dq is determined from the conti-
nuity of Eθ and Hr at z = L2. From the former case, we first
obtain

∞∑
p=1

− jωµ0Apkr1pJ1

(
kr1pr

)
·
(
Bp cos β2pL2 +Cp sin β2pL2

)
= Eθ (r) (A· 6)

∞∑
q=1

− jωµ0Dqkr3qJ1

(
kr3qr

)
sin β3q (H/2) = Eθ (r)

(A· 7)

where Eθ(r) is the r component of unknown electric field at
z = L2. Multiplying rJ1

(
kr1pr

)
on both sides of (A· 6) and

integrating from 0 to a with respect r. Also, multiplying
rJ1

(
kr3qr

)
on both sides of (A· 7) and integrating from 0 to

R with respect r. We obtain the following expressions from
the orthogonality of Bessel functions and Eθ(r)=0 from R to
a:

− jωµ0Apkr1p
a2

2

 J2
0

(
up

)
J2

1

(
up

) 
·
(
Bp cos β2pL2 +Cp sin β2pL2

)
=

∫ R

0
Eθ (r) rJ1

(
kr1pr

)
dr (A· 8)

− jωµ0Dqkr3q sin β3q (H/2)
R2

2
J2

0

(
vq

)
=

∫ a

0
Eθ (r) rJ1

(
kr3qr

)
dr (A· 9)

From the latter case, we then obtain
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1
Qc
=

1
Qcy
+

1
Qcg

(A· 23)

where Qcy, and Qcg are ones due to the conductor losses of
cylinder and cavity fringe, respectively. They are expressed
by

Qcy =
f0

(−∆ f0D/∆D) δc
(A· 24)

Qcg =
f0(

−∆ f0g/∆g
)
δc

(A· 25)

δc =
1√
π f0µ0σ

(A· 26)

where δc is a skin depth, σ = σ0σr is the conductivity, σ0 =

58× 106 S/m is the conductivity of the standard copper, and
µ0 = 4π×10−7 H/m is the permeability in the vacuum. Also,
Qd is given by

Qd =
1

tan δ
f0

2εr · (−∆ f0ε/∆εr)
(A· 27)

where the resonance frequency change ∆ f0x due to a small
distance change ∆x can be calculated from (A· 14), where x
is D, H, g or εr. As a result, Eq. (2) is derived from (A· 22)
to (A· 27).
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