遮断円筒導波管法によるミリ波複素誘電率の 測定結果に関する検討

針谷 智 清水 隆志 小林 禧夫

埼玉大学 工学部 電気電子システム工学科 〒338-8570 埼玉県さいたま市下大久保 255 電話: 048-858-3477, Fax: 048-857-2529 E-mail: yoshio@reso.ees.saitama-u.ac.jp

あらまし 遮断円筒導波管法は、長さ方向中央で分割された遮断円筒導波管の間に試料を挟み、TE₀₁₁モードの 共振周波数 f₀の変化より比誘電率ε_rを、無負荷 Q, Q_uより誘電正接 tanδを求めるミリ波帯における測定法である。 本報告では、本法により 3 個の導体円筒空洞を用いて 6 枚の PTFE 平板試料、8 枚のサファイア平板試料につい てラウンドロビンテストを行った。その結果、他モードが TE₀₁₁モードに近接している場合 tanδ測定に影響するこ と、円筒と試料間に空隙が生じるとε_r測定に影響することがわかった。また、その空隙の影響を考慮することによ り、円筒空洞に依存しない高精度なε_r測定が行えることを実証した。

キーワード 遮断円筒導波管法,ミリ波複素誘電率測定,ラウンドロビンテスト

A Study on Measured Results of Complex Permittivity by Circular Cut-off Waveguide Method in Millimeter Wave Region

Satoshi Harigai, Takashi Shimizu, and Yoshio Kobayashi

Dept. Electrical and Electronic System, Saitama University Shimo-ookubo 255, Saitama, Saitama, 338-8570 Japan

Phone: +81-48-858-3477, Fax: +81-48-857-2529 E-mail: yoshio@reso.ees.saitama-u.ac.jp

Abstract We performed round robin test for measurement of the complex permittivity for 6 PTFE plates and 8 Sapphire plates with 3 circular cavities by circular cut-off waveguide method in millimeter wave region. In the results, we found that another mode close to the measured mode affected measurement of tan δ and the gap space between circular cavity and sample affected measurement of ϵ_r . We verified that we could measure ϵ_r with a high degree of accuracy by considering the gap space.

Key words Circular cut-off waveguide method, Millimeter wave, Complex permittivity measurement, Round Robin Test

1. はじめに

空洞共振器法は、誘電体平板試料の比誘電率 ϵ_r と 誘電正接 $tan\delta \epsilon$ 、マイクロ波帯において非破壊かつ 高精度に測定する方法として知られている^{[1]-[3]}。この 方法では、誘電体平板材料を長さ方向に 2 等分した 空洞の間に挟み、共振器を構成する。 ϵ_r と $tan\delta$ は TE_{0ml} モードの共振周波数 f_0 と無負荷 Q、Q_uより計算する ことができる。

遮断円筒導波管法は、遮断円筒導波管を用いるこ とにより空洞共振モードを取り除き、ミリ波帯にお けるモード判別を容易にした測定法である。

本報告では、本法によりミリ波複素誘電率測定を 行い、円筒空洞と試料間の空隙がε_rに与える影響、 および近接モードが tanδ測定に与える影響について 検討を行った。

2. 測定原理

図 1に Ritz-Galerkin 法による解析図を示す。比誘電 率 ϵ_g 、厚さgの支持誘電体に挟まれた比誘電率 ϵ_r 、厚 さ t、直径 d の誘電体平板が、直径 D、高さ H の導体 空洞の間に置かれる。試料の ϵ_r と tanるは TE₀₁₁ モード の共振周波数 f₀と無負荷 Q、Q_uの測定値から、モー ドマッチング法による厳密な解析^[1]に基づいて開発 された Windows 用プログラムを用いて求めることが できる。

 ϵ_{r} 、 $tan\delta$ は次式で求められる。

det F (f₀; ε_r , ε_g , t, g, D, H, d) = 0 (1) tan $\delta = A/Q_u - BR_s$ (2)

さらに、R_sは導体空洞の表面抵抗であり、次式で

与えられる。

 $\mathbf{R}_{s} = \sqrt{\pi f_{0} \mu_{0} / \sigma} \quad (\Omega) \tag{3}$

 $\mu_0 = 4\pi \times 10^{-7} \ (\text{H/m}) \tag{4}$

 $\boldsymbol{\sigma} = \boldsymbol{\sigma}_0 \boldsymbol{\sigma}_r \tag{5}$

$$\sigma_0 = 58 \times 10^6 \text{ (S/m)} \tag{6}$$

ここで、 μ_0 は真空の透磁率、 σ 、 σ_0 はそれぞれ導体 の導電率、万国標準軟銅の導電率であり、比導電率 σ_r は後述のように空洞の Q_u の測定値より実験的に決 定される。また、A と B は D、H、g の導体摂動によ る共振周波数の摂動量から計算される定数であり、 次式により与えられる。

$$A = \frac{f_0}{-\left(\frac{\Delta f_0}{\Delta \varepsilon_r}\right)}$$
(7)
$$B = \frac{1}{120\pi k_0} \frac{1}{\varepsilon_r} \frac{\Delta \varepsilon_r}{\Delta f_0} \left(\frac{\Delta f_0}{\Delta H} + \frac{\Delta f_0}{\Delta R} + \frac{\Delta f_0}{\Delta g}\right)$$
(8)

3. 共振器構造

3.1 寸法および導電率測定用空洞共振器

図 2(a)は 50GHz 帯での測定に用いた空洞共振器の 構造を示す。この共振器は誘電体平板試料を挟むた めに、直径 D、長さ H の導体円筒空洞が中央で 2 つ に分割されている。円筒空洞の両端部の溝は、縮退 している TM_{11p}モードの共振周波数を TE_{01p}モードか ら分離するためのものである。空洞共振器の励振お よび検波は、先端に微小ループを持つ UT-47 セミリ ジッド同軸線路(外径 1.2mm)により円筒側面から 行われる。誘電体平板の ε_r 、tan δ を測定する前に、あ らかじめ空洞共振器の D、H、σを測定しておく必要 がある。ここで、D と H は測定可能な TE_{01p}(p=1,2, ...)モードの f₀と無負荷 Q、Q_uから求められる^[3]。 ここでは、寸法比(D/H)の異なるもの、設計共振周 波数 f₀の異なるものの 3 個の共振器を用いた。

表 1に 3 個の共振器の D, H 及びσ_rの測定結果を示 す。

3.2 誘電体平板試料測定用共振器

厚さ t の誘電体平板試料は図 2 (b)に示すように 2 つに分割された共振器の間に挟み、クリップで固定 される。このとき、円筒の両端に電波吸収材をおく と遮断円筒導波管とみることができ、不要な空洞共 振モードを抑制することができる。高精度な測定を 行うために TE₀₁₁モードを用い、先端に微小ループを

図2 測定に用いる共振器の断面図

(a) 空洞共振器

(b) 誘電体を装荷した共振器

表1	空洞共振器の	寸法及びσ _r	の測定結果
----	--------	--------------------	-------

Conitry	f_0	0	D	Н	σ_{r}
Cavity	(GHz)	Qu	(mm)	(mm)	(%)
C 1	52.640	10870	6.985	26.117	80.4
C-1	± 0.001	± 90	± 0.002	± 0.105	±1.3
C 2	56.735	10030	6.482	24.276	73.6
C-2	± 0.002	± 80	± 0.004	± 0.282	± 1.1
C 3	52.520	11230	6.991	30.917	85.7
C-3	± 0.001	± 80	± 0.002	± 0.079	± 1.2

表2 PTFE 円板の試料寸法

訂兆 No	d	t
H-V/1110.	(mm)	(mm)
P1	10.2 ± 0.071	0.255 ± 0.002
P2	10.1 ± 0.007	0.254 ± 0.001
P3	10.1 ± 0.007	0.291 ± 0.001
P4	10.3 ± 0.354	0.199 ± 0.001
P5	10.1 ± 0.021	0.198 ± 0.001
P6	10.0 ± 0.028	0.199 ± 0.001

持つ同軸線路により円筒側面から行われる。

今回、ミリ波帯における測定を目的としたため、 薄い試料を用意した。

4. 測定結果

4.1 PTFE 円板

表 2に測定に用いた 6 枚の PTFE 円板試料の寸法 (直径 d、厚さ t)を示す。

後述の理由により空洞共振器法で測定した。図 3 にその測定結果を示す。 ε_r の誤差棒は t の測定誤差、 tan δ の誤差棒は Q_uの測定誤差によるものである。こ の図より、 ε_r はよく一致しており、50GHz 帯におけ る PTFE の ε_r は 2.08~2.10 である。

一方、tanδは約 2 × 10⁴ であるが、試料 No. P4, 6 で は C-1 円筒の場合、tanδの測定結果が他の導体円筒の 場合と比べ高い。これは、共振器により D/H が異な る、または設計共振周波数 f_0 が異なるため、このD/H、 f_0 のとき他のモードが近接し、 Q_u 測定に悪影響を及 ぼしていると考えられる。

図 4に試料 No. P4 の遮断円筒導波管法のモードチャートを示す。図 5 に試料 No. P4 の周波数応答を点線で示す。(a)図は C-1 円筒を用いた場合、(b)図は C-3 円筒の場合である。このとき、いずれの導体円筒においても測定モードに低QのTM₁₁₀モードが重なり、Q_uはそれぞれ約 4100、5500 (tanδ=2.5 × 10⁻³)であった。

そこで、モード分離するために導体円筒両端の電 波吸収材を短絡板におきかえ、空洞共振器法で測定 した。図6に空洞共振器法のモードチャートを示す。 また、このときの周波数応答を図5中に実線で示す。 C-1 円筒ではTE₀₁₁モード付近に空洞共振モードが現 れた。このとき、Q_uは C-1 円筒のとき約9400、C-3

円筒のとき約 10000 であった。これより、tanδが高い のは近接モードの影響によりQuが他の導体円筒より 低く測定されたためである。

4.2 サファイア平板

表3に測定を行った6枚の円板試料の寸法(直径d、 厚さt)を示す。

また、図7 に遮断円筒導波管法の測定結果を示す。 ϵ_r の誤差棒は t の測定誤差、 $tan\delta$ の誤差棒は Q_u の測定 誤差によるものである。 ϵ_r については概ね 9.3~9.4 の 範囲にあるが、試料 No. 1 はそれよりも低く試料 No. 6 はやや高い。しかし、すべての導体円筒で同じ結果 であるので、これは試料の個体差であると結論され る。この原因としては、c 軸のずれや格子欠損などが 考えられる。

一方、ある一つの試料については、図中 で示した C-3 円筒を用いたとき、他の導体円筒のときと比 ベ常に ε_r が高く評価されている。これは導体円筒と 試料間に空隙が生じているためと考え、厳密な電磁 界解析^[4]に基づいた計算プログラムにより空隙 g=0.01mm を与えて ε_r を求めた。その結果を図中 で示す。空隙を考慮することにより ε_r はよく一致し、使用する導体円筒に依存しない高精度な測定ができる。

次に tanδについては、C-3 円筒を用いた場合、試料 No. S5, 6 の tanδが他の導体円筒の場合と比べ高い。 これも PTFE と同様に、近接モードが Q_u 測定へ影響 していると考えられる。

図 8 に試料 No. S6 の遮断円筒導波管法のモードチャートを示す。また、図 9 に試料 No. S6 の周波数応答を示す。(a)図は C-1 円筒の場合、(b)図は C-3 円筒の場合である。遮断円筒導波管法の場合、周波数応答を見る限りでは導体円筒による違いは見られないが、Q_uは C-1 円筒のとき 9200、C-3 円筒のとき 8600と約 600 の差が見られた。そこで導体円筒の両端の

≐-# #刘	d	t
司以个十	(mm)	(mm)
S 1	9.958 ± 0.003	0.216 ± 0.001
S2	9.958 ± 0.002	0.213 ± 0.001
S 3	9.947 ± 0.017	0.209 ± 0.003
S4	9.957 ± 0.008	0.304 ± 0.002
S5	9.949 ± 0.012	0.295 ± 0.002
S6	9.948 ± 0.022	0.298 ± 0.001
S 7	10 × 10	0.506 ± 0.001
S 8	10 × 10	0.524 ± 0.001

表3 サファイア平板の試料寸法

電波吸収材を短絡板におきかえ、空洞共振器法によ る測定も行った。図 10 に空洞共振器法のモードチャ ートを示す。その結果、C-3 円筒では TE₀₁₁モード付 近に空洞共振モードが現れた。これより、tanδが高く 測定されたのは近接モードにより Q_uが低く測定され たためであり、空洞共振モードが十分に減衰しきれ てなく、電波吸収材の性能がまだ不十分であるとい うことがわかる。

モードチャート

5. まとめ

遮断円筒導波管法によるミリ波複素誘電率測定の ラウンドロビンテストを行った結果、他モードが近 接している場合 Q_u測定に影響しており、tanδを正確 に測定するためには円筒空洞を適当に選ぶ必要があ ること、導体円筒と試料間の空隙がε_r測定に影響す ることがわかった。また、空隙を考慮した測定によ り、用いる円筒空洞に依存しない高精度な測定が行 えることを示した。

参考文献

[1] Y.Kobayashi and J.Sato, "Nondestructive measurement of complex permittivity of dielectric plate materials by a cavity resonance method,"信学技報, MW87-53, pp.41-48, Oct. 1987.

- [2] Y.Kobayashi and J.Sato, "Complex permittivity measure- ment of dielectric plates by a cavity resonance method," 信学技報, MW88-40, EMCJ88-58, Nov. 1988.
- [3] G.Zhang and Y.Kobayashi, "Complex permittivity measurement of dielectric plates using the lowest TE_{111} mode of a circular cavity resonator," 1996 China-Japan Joint Meeting on Microwaves, Proc., p32-35, Apr. 1996.

[4] 清水, 針谷, 小林, "遮断円筒導波管法による複素誘電率 測定 1", 信学ソ大, C-2-75, Sept. 2001.

