遮断円筒導波管法による複素誘電率測定のラウンドロビンテスト

Round robin test on complex permittivity measurement by the cut-off circular waveguide method

西野 智弘 Tomohiro Nishino **清水 隆志** Takashi Shimizu 小林 禧夫 Yoshio Kobayashi

埼玉大学工学部電気電子システム工学科 Dept. of Electrical and Electronic Systems, Saitama University

1.はじめに

遮断円筒導波管法は、ミリ波帯において誘電体 平板試料の比誘電率*ε*,と誘電正接 tanδを、高精度 に測定する方法として報告されている^{[1][2]}。本報 告では、7 個の共振器による複素誘電率測定の結 果を示す。

2. 測定原理

厚さ t の誘電体平板を導体円筒の中央に装荷し、 遮断 TE_{0m1}(m=1,2,・・・)モード誘電体円板共振器を 構成する。 ε_r は TE_{0m1} モードの共振周波数 f_0 の測 定値より、tanδは f_0 と無負荷 Q,Q_u の測定値より求 まる。また、この際、空洞共振器を用いて、 TE_{01p}(p=1,2,・・・)モードの f_0 および Q_u の測定値より、 直径 D、長さ H、および比導電率 σ_r をあらかじめ 測定しておく。表 1 に各共振器の D、H、 σ_r と、 測定に用いた TE₀₁₁モードの f_0 、 Q_u を示す。

3. 測定結果

BMT セラミクス平板(以下 BMT)、sapphire 平板、 改質ポリオレフィン平板(以下 MPO)の複素誘電率 を、TE₀₁₁ モード、室温にて測定した。10 回測定 のうち、Q₄ 値の高い 5 つの値を選び、その平均値 を測定値とした。図 1 にその測定結果を示す。

個々の共振器における ε_r の測定精度は、いずれ の測定試料でも±0.3%程度である。また、 $\tan\delta$ の 測定精度は、BMT と MPO-A1 が±4%、sapphire が ±6%、MPO-A2 が±9%である。 $\tan\delta$ がばらついて いる原因は、測定器の雑音による影響で Q_u の測定 値がばらついたためと考える。

新しい共振器を用いるにつれ、*ε*,が低く評価される傾向にある。これは、導体円筒と試料間の隙間が改善されているためと考える。

4. まとめ

共振器間のばらつきを考慮した本測定の測定精 度は、 ε_r に関してはいずれの測定試料も±0.7%程 度であり、 $\tan\delta$ に関しては BMT が±5%、sapphire が±12%、MPO-A1 が±7%である。また、MPO-A2 は±23%である。MPO-A2 の $\tan\delta$ がばらついて いるのは、試料が厚すぎて、誘電体を装荷した共 振器が安定しなかったことが原因である。

<参考文献>

[1]清水、小林、"ミリ波同軸励振空洞共振器法による誘電体 平板の複素誘電率の温度依存性の測定、"信学技法, ED2000-188, MW2000-145, pp.1-6, Nov. 2000

[2]T.Shimizu, Y.Kobayashi, "Millimeter wave measurements of temperature dependence of complex permittivity of GaAs plates by a circular waveguide method," *2001 IMS. Digest*, THIF-51, pp.2195-2198, Jun. 2001.

共振器 (製作年/月)	$f_0(GHz)$	Q_u	<i>D</i> (mm)	H (mm)	$\sigma_r(\%)$
1	52.521	11130	6.991	30.917	84.8
(1999/10)	± 0.001	± 50	± 0.002	± 0.080	± 0.7
2	52.646	11050	6.993	23.770	82.3
(2000/02)	± 0.001	± 40	± 0.006	± 0.283	± 0.5
3	56.735	10210	6.480	24.289	75.0
(2000/03)	± 0.001	± 20	± 0.003	± 0.008	± 0.2
4	52.640	10680	6.985	26.118	76.2
(2000/03)	± 0.001	± 40	± 0.002	± 0.105	± 0.5
5	52.366	10560	7.011	31.066	76.1
(2002/09)	± 0.001	± 50	± 0.002	± 0.044	± 0.7
6	52.286	10650	7.022	31.045	77.3
(2002/09)	± 0.001	± 60	± 0.002	± 0.045	± 0.8
7	52.292	10360	7.020	31.033	73.2
(2002/09)	± 0.001	± 60	± 0.002	± 0.031	± 0.8

表1 共振器の寸法と比導電率

